Imperial College London

A Basic Guide to Gene Therapy

Uta Griesenbach

Professor of Molecular Medicine, Imperial College President of the British Society for Gene and Cell Therapy Director (non-exec) of Cell and Gene Therapy Catapult Chair Pan-UK ATMP Workforce Training Group

Aims of this Webinar

- **1. Provide information on key terminology**
- 2. Audience to become familiar with the tools that gene therapist use
- 3. Audience to gain an understanding of some licensed (or close to licensing) gene therapy treatments

What is Gene Therapy?

Gene Therapy treats, prevents or diagnoses a disease as a result of its recombinant nucleic acid, which regulates, repairs, replaces, *adds* or deletes a genetic sequence.

Not covered in this talk:

Gene editing Gene silencing

Gene Therapy Somatic cell therapy (gene modified cells) Tissue engineered products Advanced Therapeutic Medicinal Products (ATMPs)

Advanced Therapies

Fast Growing Field + Wide range of Application

Gene therapy for genetic and acquired diseases

Ex vivo vs in vivo Applications

Ex vivo gene modified cells

Autologous cells Allogenic cells

Gene transfer agents (gene transfer vectors)

Viral vectors (gene inside)

Adenovirus

Adeno-associated virus

Lentivirus

Viral vector **≠** Virus

Example: Lentiviral Vector HIV most commonly used

Integrating vs non-integrating Vectors

Episomal gene addition

Adenovirus Adeno associated virus Most non-viral vectors

Chromosomal gene integration (random)

Lentiviral vectors

Characteristics

Viral Vectors

More efficient (evolution)

Most (not all) are immunogenic

Limited packaging capacity

Some short, some long duration

Non-viral Vectors

Less efficient (man made)

Less likely to be immunogenic

No limit to packaging capacity

Short/moderate duration

How to choose the right vector? Steep learning curve!

Acute or chronic disease? Short of long duration of gene expression? Dividing or non-dividing target cell? *Ex vivo* or *in vivo*? Size of gene?

Manufacturing

Costs are high – Innovation required

Examples – CAR T cells

- Some tumours make specific protein (antigens)
- Targeting of the immune system to these specific proteins (antigens) can help to destroy tumour cells
- Immune system (T cells) have to be **armed** to recognise the tumour antigen

CAR T cells – 2 licensed products

Licensed 2017/2018

B cell lymphomas Significant improvements in survival rates Some side effects Relapse rates? – Time will tell

Future challenges:

Allogenic vs autologous cells CAR T for solid tumours

Examples – Immuno deficiencies

Defective immune system due to various genetic defects

ADA-SCID one form of the disease

Correct genetic defect in hematopoietic stem cells

Strimvelis – licensed in 2017 Cure for life, but very expensive Treatment only in one centre in Italy

Examples – Blindness

Leber's congenital amaurosis Inherited disorder causing progressive blindness Subretinal injection to replace the defective gene in the retina Not a cure, but improvement in vision

Examples – SPINAL MUSCULAR ATROPHY (SMA)

Inherited neurological disease Rapid loss of motor neurones function >95% dead at 6 months

Zolgensma (approved in 2019)

Injected intravenously Improvement in motor function (not a cure) Most expensive drug ever approved

Examples – Haemophilia

Not a licensed medicine yet, but several phase 3 trials ongoing

TABLE. Ongoing or Announced Phase III rAAV-Mediated Gene Therapy Trials for Hemophilia A and B

Sponsor	Therapy	Coagulation Factor
BioMarin Pharmaceuticals	Valoctocogene roxaparvovec ("val-rox", formerly BMN-270)	Factor VIII
Spark Therapeutics	SPK-8011	Factor VIII
Pfizer	Fidanacogene elaparvovec (formerly SPK-9001)	Factor IX
UniQure	AMT-061	Factor IX

Problems encountered

Advanced Therapeutics - Headlines

Priority area for the UKs Industrial Strategy

Significant government investments (~£200 M) Cell and Gene Therapy Catapult 3 Advanced Therapeutic Treatment Centres Vector manufacturing

Estimates market growth to \$21bn/year worldwide by 2025

£2.5bn of venture capital funding invested since 2012

Skill shortage is a bottleneck to developing gene and cell therapies and for delivery into the NHS

UK Apprenticeship scheme – tackle skill shortage in manufacturing (~ 6000 UK jobs in 2024)

ATTCs/LAT/CGTC working closely together to address skill shortage across various sectors (webinars, e-learning modules, conferences...)

THANKS FOR LISTENING

We love to hear your feedback on content, but also suggestions for other topics you may be interested in

Please email u.griesenbach@imperial.ac.uk or ian.hollingsworth@ct.catapult.org.uk